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LETTER TO THE EDITOR 

Proof of long range order for a class of ferroelectric vertex 
models 

J F Stilck 
Instituto de Fisica, Universidade de Sgo Paulo CP 20516, 01000 Si0 Paulo, SP, Brazil 

Received 24 August 1983 

Abstraet. A class of ferroelectric models on a square lattice, including some models used 
for studying the phase transitions in crystals of squaric acid, is shown to exhibit long range 
order at low enough temperatures. This is accomplished by taking into account the property 
of reflection positivity and using a modified Peierls argument. 

In the present work we use a method proposed by Frohlich and Lieb (1978) to prove 
the existence of long range order for a class of ferroelectric vertex models on a square 
lattice. As a particular case, we include a 12-vertex model which has recently been 
used to study the phase transition in squaric acid (Stilck and Salinas 1981). The well 
known Peierls (1936) argument, which was made rigorous by Griffiths (1964) and 
Dobrushin (1969,  leads to an inequality for the magnetisation of discrete spin systems 
submitted to fixed boundary conditions. At low enough temperatures, this inequality 
establishes the existence of spontaneous magnetisation. On the other hand, the 
approach of Frohlich and Lieb (1978) relies on the property of reflection positivity 
(Osterwalder and Schrader 1973, 1975) to show that the pair correlations of some 
spin models will not decay to zero at infinite distances, provided the temperature is 
sufficiently low. 

Let us consider the 16-vertex model on the square lattice, and number the configur- 
ations according to the notation of Lieb and Wu (1972). Since we are concerned with 
energy levels which are invariant under the inversion of all arrows, we make e, = e2 = El, 
e3 = e4 = E Z ,  e5 = e6 = E3, e7 = e8 = E4, e9 = e13 = E5, eIo = eI4 = E6, ell = e15 = E7, 
e12 = e16 = E8. Following Suzuki and Fisher (1970), this vertex model may be transfor- 
med into an Ising model with nearest-neighbour, next-nearest-neighbour and four-spin 
interactions on the medial square lattice. If we associate an Ising spin with each link 
of the original lattice, such that u = 1 if the arrow points up or rightwards, and U = -1 
if it points down or leftwards, the energy of every vertex may be written as a function 
of the four incident Ising spins (see figure 1). We thus have 
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Figure 1. A vertex and the four 
links where the king spins are 
located. lattice. 

Figure 2. Numbering scheme for 
the elementary squares of the 

Figure 3. A pictorial description 
of the projection operator Pn. 

Let us now define horizontal and vertical reflection lines on the original N-site 
lattice R. We assume toroidal boundary conditions, each reflection line separating the 
lattice R into two congruent parts, 0, and 0-. It should be noticed that there will 
be a set of spins on the reflection line. We will call this set R,. If we define the 
reflection of a spin, 

6) (vi ) E ae,i  9 (3) 

W({ai))  F ( { o p i ) ) ,  (4) 

E(a, ,  ffz, m3, a 4 1  = @&(a17  a29 a37 a 4 1  ( 5 )  

E 3  = E 4 ,  E 5  = E7, E 6  = Ea. ( 6 )  

x = X+ + e,%+, (7) 

where X+ comprises the contribution of vertices belonging to a+. Following Frohlich 
and Lieb (1978), it is not difficult to show that, given an arbitrary function F({a i ) ) ,  
with ai E a+, R,, we have the inequality 

(8) 
{mi} (U,} 

and the reflection of an arbitrary function of the spins, 

it is easy to see that in order to make 

for all vertices and reflection lines, we must have J1 = J2 = J3 = J4, or, alternatively, 

From equation ( 5 )  we may write the 16-vertex model Hamiltonian in the form 

(Fe,F) = c Fop e-.%/ e+% s 0. 

From this last property, which is the so-called reflection positivity, we may set up a 
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Schwarz inequality, 

(F0,G)2 s (FOIF) + ( GOiG), (9) 

where F and G are functions of ai E R,, R,. 
Our aim is to show that, under some restrictions, (aoai)>O at sufficiently low 

temperatures and independent of the localisation of ai. We start by defining projection 
operators Pi, which act on the spin configurations {ai}, 

P' = $(a' + l ) ,  p ;  = 1 - p t .  (10)  

( aOai) = (P,'P') + ( P i p ; )  - ( P i P T )  - (P,'PY), ( 1 1 )  

(PO'P') = (P,P,) and (P,+P;) = (P,P+).  (12a, b )  

Therefore 

and the invariance of the model under the inversion of arrows ensures that 

Since we may write ( P i p ' )  =(Pi) - ( P i p ; ) ,  and the toroidal boundary conditions, as 
well as the arrow inversion invariance, give ( P : ) = i ,  equation ( 1 1 )  may then be 
rewritten as 

(aOai) = 1 -4(P,CPT). ( 1 3 )  

To obtain an inequality for (P;P;)  we followed the steps outlined in 00 1.C-1.E of 
Frohlich and Lieb (1978) .  Therefore, we omit here most of the details. Let us define 
y to be a closed contour on the medial lattice of a, which separates the link 0 from 
the link i. We may thus write the inequality 

where the symbols (i, j )  label pairs of nearest-neighbour links which define the contour 
y. Now we may number the elementary squares of the original lattice from 1 to 4 ,  
according to the scheme depicted in figure 2. The set of nearest-neighbour links y 
may be split into eight subsets yea, with (r = 1 , 2 , 3 , 4 ,  and p = h, U. The value of a 
corresponds to the number of the square in whose sides the links are located. p is 
given by h ( u )  if the + link of the pair is horizontal (vertical). The second member of 
the inequality (14)  satisfies 

@ = h , v  

Now we repeatedly apply the Schwarz inequality ( 9 )  to each factor on the right-hand 
side of (15) ,  for different reflection lines 1, and obtain 

where ( y e p (  is the number of pairs of links in yap and Pn is a 'universal' projection 
operator which covers the whole lattice and is defined in figure 3. Expressions ( 1 5 )  
and ( 1 6 )  lead to 

(P,+PJ s (Pn)'Yl/8N. ( 1 7 )  
Y 
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Now let us obtain an inequality for the expectation value, 

The denominator may be replaced by the Boltzmann factor corresponding to the 
ground state energy Xo. Supposing that El = O  is the minimum value of the energies 
Ei, it follows that 

(19) Xo = -N(Jo + 451 + 55 + 56- t  57). 

The evaluation of the numerator of equation (18) leads to 

where a, =4 ,  a, = a, = a4 = as = 2 ,  a6 = a7 = a x  = a, = 1; and f, =+[E,+ E,+ E,+ E6], 

f9 = E3. Let us call f" the minimum value of f i ,  for all i. Then 
f -1 

2 - ,[E2 + E61, f 3  = +[E, E51, f4 = +[E, + E519 fs = $[E,+ E61, f6 = E2, f7  = '56, fs = E53 

(pa) s [2 e-pp]N, (21) 

and equation (1 7) may be rewritten in the form 

where 

~ ~ Q ( p f r - l n 2 ) .  (23) 

Using a type of Peierls argument the summation over contours in ( 2 2 )  may be bounded, 
and at low enough temperatures we have 

(P ,+P; )c  1 8 e - ~ ~ / ( 1  -9e-2K)2. (24) 

(25) 

Thus there is ferroelectric long range order if f" > 0,  or alternatively, if 

E 2 9  E39 E5, E6> 0. 

Therefore, the 16-vertex model orders ferroelectrically at low temperatures, provided 
that there are only two vertex configurations ( 1  and 2 )  in the ground state. It is worth 
remarking that Abraham and Heilmann (1976) presented an argument supporting the 
idea that a model with a fourfold degenerate ground state (configurations 1 ,  2, 3 and 
4) would not display ferroelectric ordering at finite temperatures. 

The ferroelectric 12-vertex model (Stilck and Salinas 1981) is defined by El = 0, 
E, = E > 0, E5 = E6 = E7 = Ex = E' < E and E3 = E, + CO. It fulfils conditions (6), and 
ferroelectric ordering should exist for E > 0. If we consider a 16-vertex model with 
E, = E4 = E"> E' this conclusion still holds. As a matter of fact, this model may be 
solved for E = 0, with an analytic free energy (Stilck and Salinas 1981). A ferroelectric 
%vertex model, with El = 0, E, > 0, E, = E4 > 0, E5, Eb, E7, Ex + CO is also included 
in the class of models we consider. 

It is a pleasure to acknowledge the critical reading of the manuscript by S R Salinas, 
as well as fruitful discussions with J R Perez and W F Wreszinski. 
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